Dilution and pH calculations

Using the three formulae shown on the right answer the

$$
\mathrm{C}_{1} \mathrm{~V}_{1}=\mathrm{C}_{2} \mathrm{~V}_{2}
$$

following questions.

$$
\begin{aligned}
& \mathrm{pH}=-\log _{10}\left[\mathrm{H}_{3} \mathrm{O}^{+}\right] \\
& 10^{-14}=\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]\left[\mathrm{OH}^{-}\right]
\end{aligned}
$$

1) Calculate the pH of a solution that has an $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$:
i. $10^{-4} \mathrm{M}$
ii. $\quad 0.35 \mathrm{M}$
iii. $\quad 4.52 \times 10^{-4} \mathrm{M}$
2) Calculate the pH of a solution that has an $\left[\mathrm{OH}^{-}\right]$:
i.
$10^{-6} \mathrm{M}$
ii. $\quad 0.78 \mathrm{M}$
iii. $\quad 3.6 \times 10^{-10} \mathrm{M}$
3) Consider the table below. It represents changes made to an original solution. All solutions are at $25^{\circ} \mathrm{C}$. Complete the table.

Volume of original solution (mL)	pH	Volume of water added (mL)	New pH
300	0.55	200	1.20
150		350	6.33
200	4.52		
	2.34	100	3.53

4) A 350 mL sample of an acid solution at $25^{\circ} \mathrm{C}$ has 4.52 grams of HCl dissolved in it.
i. Knowing that HCl is a strong acid what can be assumed about the ionisation of HCl in water?
ii. Calculate the $\left[\mathrm{OH}^{-}\right]$of the resulting solution.
iii. What is the pH of the solution that results?
iv. $\quad 150 \mathrm{~mL}$ of distilled water is added to the 350 mL acid solution. Calculate the pH of the resulting solution.
5) Consider a 400 mL solution, at $25^{\circ} \mathrm{C}$, with a $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$of $10^{-3.524} \mathrm{M}$.
i. \quad Calculate the $\left[\mathrm{OH}^{-}\right]$
ii. Calculate the pH of the solution.
iii. Calculate the pH of the resulting solution when 200 mL of distilled water is added to the 400 mL solution.
6) Consider a solution that is made up by placing 0.512 g of calcium hydroxide $\left(\mathrm{Ca}(\mathrm{OH})_{2}\right)$ in a 250 mL volumetric flask and made to the mark with distilled water.
i. Calculate the molarity of the $\mathrm{Ca}(\mathrm{OH})_{2}$ solution.
ii. Calculate the $\left[\mathrm{OH}^{-}\right]$
iii. Calculate the $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$
iv. Calculate the pH of the solution.

