Dilution and pH calculations

Using the three formulae shown on the right answer the following questions.

1) Calculate the pH of a solution that has an

$\mathrm{pH}=-\log _{10}\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$

$10^{-14}=\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]\left[\mathrm{OH}^{-}\right]$
$\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$:
i. $\quad 10^{-4} \mathrm{M}$
$\mathrm{pH}=-\log _{10}\left[10^{-4}\right]=4$
ii. $\quad 0.35 \mathrm{M}=10^{-0.456}=>\mathrm{pH}=-\log _{10}\left[10^{-0.456}\right]=0.456$
iii.

$$
4.52 \times 10^{-4} \mathrm{M}=10^{0.655} \times 10^{-4}=10^{-3.345} \Rightarrow \mathrm{pH}=-\log _{10}\left[10^{-3.345}\right]=3.345
$$

2) Calculate the pH of a solution that has an $\left[\mathrm{OH}^{-}\right]$:
i.
$10^{-6} \mathrm{M}$
$\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=10^{-14} /\left[\mathrm{OH}^{-}\right]=10^{-14} / 10^{-6}=10^{-8} \Rightarrow \mathrm{pH}=-\log _{10}\left[10^{-8}\right]=8$
ii. $\quad 0.78 \mathrm{M}$
$\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=10^{-14} /\left[\mathrm{OH}^{-}\right]=10^{-14} / 10^{-0.108}=10^{-13.89} \Rightarrow \mathrm{pH}=-\log _{10}\left[10^{-13.89}\right]=13.9$
iii.
$3.6 \times 10^{-10} \mathrm{M}=10^{0.556} \times 10^{-10}=10^{-9.444}$
$\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=10^{-14} /\left[\mathrm{OH}^{-}\right]=10^{-14} / 10^{-9.444}=10^{-4.556} \Rightarrow \mathrm{pH}=-\log _{10}\left[10^{-4.556}\right]=4.56$
3) Consider the table below. It represents changes made to an original solution. All solutions are at $25^{\circ} \mathrm{C}$. Complete the table.

Volume of original solution (mL)	pH	Volume of water added (mL)	New pH
300	0.55	200	$\begin{gathered} \mathrm{C}_{1} \mathrm{~V}_{1}=\mathrm{C}_{2} \mathrm{~V}_{2} \\ \mathrm{C}_{2}=\left(0.300 \mathrm{~L} \times 10^{-055}\right) / 0.500 \mathrm{~L} \\ =0.300 \times 0.282 / 0.500 \\ {\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=0.169 \mathrm{M}} \\ \mathrm{pH}=-\log _{10}[0.169]=0.772 \end{gathered}$
150	$\begin{gathered} \mathrm{C}_{1} \mathrm{~V}_{1}=\mathrm{C}_{2} \mathrm{~V}_{2} \\ \mathrm{C}_{1}=\left(0.500 \mathrm{~L} \times 10^{-1.20}\right) / 0.150 \mathrm{~L} \\ =0.500 \times 0.0631 / 0.150 \\ {\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=0.210 \mathrm{M}} \\ \mathrm{pH}=-\log _{10}[0.210]=0.678 \\ \hline \end{gathered}$	350	1.20
200	4.52	$\begin{gathered} \mathrm{C}_{1} \mathrm{~V}_{1}=\mathrm{C}_{2} \mathrm{~V}_{2} \\ \mathrm{~V}_{2}=10^{-4.52} \times 0.200 / 10^{-6.33} \\ \mathrm{~V}_{2}=3.02 \times 10^{-5} \times 0.200 / 4.68 \times 10^{-7} \\ \text { Final volume }=12.91 \mathrm{~L} \\ \text { Volume added to } 0.200 \mathrm{~L} \text { is } \end{gathered}$ 12.71L	6.33
$\begin{gathered} V_{1}=C_{2} V_{2} / C_{1} \\ V_{2}=V_{1}+0.100 \mathrm{~L} \\ V_{1}=10^{-3.53}(x+0.1) / \\ 10^{-2.34} \\ V_{1}=0.0644 V_{1}+ \\ 0.00644 \end{gathered}$	2.34	100	3.53

$=>0.936 \mathrm{~V}_{1}=0.00644$			
$\mathrm{~V}_{1}=6.88 \mathrm{~mL}$			

4) A 350 mL sample of an acid solution has 4.52 grams of HCl dissolved in it.
i. Knowing that HCl is a strong acid what can be assumed about the ionisation of HCl in water?

It is complete so for every mol of HCl that dissolves one mol of $\mathrm{H}_{3} \mathrm{O}^{+}$will be produced.
ii. Calculate the $\left[\mathrm{OH}^{-}\right]$of the resulting solution.

Step 1 calculate the mol of HCl
=> 4.52/36.5 = 0.124 mol
Step 2 Find the mol of $\mathrm{H}_{3} \mathrm{O}^{+}$
=> 0.124 mol
Step 3 find $\left[\mathrm{H}_{3} \mathrm{O}^{=}\right.$]
=> 0.124/ $0.350=0.354 \mathrm{M}$
Step 4 find $\left[\mathrm{OH}^{-}\right]$
$\Rightarrow 10^{-14} / 0.354=\left[\mathrm{OH}^{-}\right]=10^{-14} / 10^{-0.451}=10^{-13.55}$
iii. What is the pH of the solution that results?
$\mathrm{pH}=-\log _{10}[0.354]=10^{-0.451}$
$=0.451$
iv. $\quad 150 \mathrm{~mL}$ of distilled water is added to the 350 mL acid solution. Calculate the pH of the resulting solution.

$$
\begin{aligned}
& C_{1} V_{1}=C_{2} V_{2} \\
& 10^{-0.451} \times 0.350 / 0.500=\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=0.248 \mathrm{M} \\
& p H=-\log _{10}[0.248]=0.606
\end{aligned}
$$

5) Consider a 400 mL solution with a $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$of $10^{-3.524} \mathrm{M}$.
i. Calculate the $\left[\mathrm{OH}^{-}\right]$ $\left[\mathrm{OH}^{-}\right]=10^{-14} /\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=10^{-10.476}$
ii. Calculate the pH of the solution.
3.524
iii. Calculate the pH of the resulting solution when 200 mL of distilled water is added to the 400 mL solution.

Step 1 find the $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$of the final solution
$\Rightarrow C_{1} V_{1}=C_{2} V_{2}$
$\Rightarrow 10^{-3.524} \times 0.400=C_{2} \times 0.600$
$\Rightarrow C_{2}=10^{-3.524} \times 0.400 / 0.600=1.995 \times 10^{-4}=10^{0.300} \times 10^{-4}=10^{-3.700}$
Step 2 find pH
$-\log _{10}\left[10^{-3.700}\right]=3.700$
6) Consider a solution that is made up by placing 0.512 g of calcium hydroxide $\left(\mathrm{Ca}(\mathrm{OH})_{2}\right)$ in a 250 mL volumetric flask and made to the mark with distilled water.
i. Calculate the molarity of the $\mathrm{Ca}(\mathrm{OH})_{2}$ solution. Mol of $\mathrm{Ca}(\mathrm{OH})_{2}$
=> $0.512 / 74.1=0.00691$
ii. Calculate the $\left[\mathrm{OH}^{-}\right]$

Step 1 the dissociation of $\mathrm{Ca}(\mathrm{OH})_{2}$
$\mathrm{Ca}(\mathrm{OH})_{2}(\mathrm{~s}) \rightarrow \mathrm{Ca}^{2+}(a q)+2 \mathrm{OH}^{-}(a q)$
Step $2 \mathrm{~mol}^{2} \mathrm{OH}^{-}=2 \times 0.00691=0.0138 \mathrm{~mol}$
Step 3 find $\left[\mathrm{OH}^{-}\right]$
$=>0.0138 / 0.250=0.0553 \mathrm{M}$
iii. Calculate the $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$
$\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=10^{-14} / 0.0553=10^{-14} / 10^{-1.26}=10^{-12.74}$
iv. Calculate the pH of the solution.

$$
p H=-\log _{10}\left[10^{-12.74}\right]=12.74
$$

