Friday Worksheet

Enthalpy and rate worksheet 2

1) To determine the enthalpy change of the reaction between aluminium metal and copper ions, as shown below, a student conducted an experiment.

$$2AI(s) + 3CuSO_4(aq) => 3Cu(s) + AI_2(SO_4)_3(aq) \Delta H =?$$

This involved adding a known mass of powdered aluminium to 1.50 M copper (II) sulfate solution in a calorimeter and then measuring the temperature change.

Two separate experiments, A and B, were conducted under the same conditions. In experiment $\bf B$ a greater volume of CuSO₄(aq) was used than in $\bf A$. In both experiments, copper sulfate was always in excess. The results of experiment A are shown below.

Temperature °C	Time (seconds)
20.0	0
23.1	2
28.2	4
38.2	8
60.5	15
66.6	17
68.2	18
70.4	19
72.2	20
72.8	21
71.5	22
70.2	23
70.0	24
69.8	25

	Experiment A	Experiment B
Amount of aluminium metal used	0.0500 mol	0.0500 mol
Volume of 1.50 M CuSO ₄ (aq)	50.0 mL	80.0 mL
Initial temperature of the CuSO ₄ (aq)	Y °C	20 °C
Temperature of solution after the reaction's completion	D °C	X °C

a) Give the temperature of Y °C and D °C

Y °C = 20.0

 $D^{\circ}C = 72.8$

b) Assume that 4.20 J is needed to raise the temperature of 1.00 mL of solution by 1.00 °C. Use the results of **Experiment A** to calculate the energy released, in kJ, by the reaction between the aluminium metal and the copper (II) sulfate solution.

 $E = 4.20 \text{ X mass } X \Delta T$ E = 4.20 X 50.0 X 52.8E = 11.1 kJ

c) Calculate the ΔH of the reaction

Energy/mol of zinc = 11.1 / 0.05 = 222 kJ

Since the equation accounts for two mol of aluminium then the is $\Delta H = -444 \text{ kJ.mol}^{-1}$

$$2AI(s) + 3CuSO_4(aq) => 3Cu(s) + AI_2(SO_4)_3(aq) \Delta H = -444 \text{ kJ.mol}^-$$

d) Is the temperature reached by the solution in experiment B greater, less than or equal to that of experiment?. Explain.

It is less since there is a greater volume of solution to absorb the heat energy given out.

2) Reactants A and B react according to the equation below.

$$A(g) + 2B(g) \rightleftharpoons AB_2(g) \Delta H = +22 \text{ kJ.mol}^{-1}$$

Indicate whether the statements below are True of False? Offer an explanation

a) The amount of AB₂ present at equilibrium increases.

False. A catalyst does not impact on the yield.

b) The expression $[AB_2]$ increases at equilibrium [A]

False. A catalyst does not alter the amount of product present at equilibrium.

- c) The reaction changes to A(g) + 2B (g) \rightleftharpoons AB₂(g) \triangle H = -22 kJ.mol⁻ False. A catalyst does not alter the enthalpy change.
- d) Lowers the value of the equilibrium constant thus allowing more particles to react and increasing the rate at which the reaction proceeds.

False. A catalyst does not affect the equilibrium position of a reaction.