\qquad

Gravimetric 1

1) Glyceryl trinitrate, more commonly known as nitroglycerin, is a compound of carbon, hydrogen, nitrogen and oxygen. Its molar mass is $227 \mathrm{~g} \mathrm{~mol}^{-1}$.
In an analysis of nitroglycerin, it was recorded that a 1.7321 g sample contains 0.2747 g of carbon, 0.3205 g of nitrogen and 1.0988 g of oxygen.
a. Use the data recorded in the analysis to determine: the molecular formula of glyceryl trinitrate.
Mass ratio $C=0.2747: N=0.3205: O=1.0988: H=0.0381$
Mole ratio $C=0.0229: N=0.0229: O=0.0687: H=0.0381$
Simplest ratio $C=1: N=1: O=3: H=1.66$
Multiply by 3 to change to whole numbers $C=3: N=3: O=9: H=5$
Empirical formula $\mathrm{C}_{3} \mathrm{~N}_{3} \mathrm{O}_{9} \mathrm{H}_{5}$
Since the empirical mass and formula mass are equal the molecular formula is the same as the empirical formula. $\mathrm{C}_{3} \mathrm{~N}_{3} \mathrm{O}_{9} \mathrm{H}_{5}$
b. Glyceryl trinitrate is an unstable compound which, when exposed to a shock, undergoes explosive decomposition to produce carbon dioxide, nitrogen, water vapour and oxygen according to the equation

4 Glyc cryl trinitrate $\rightarrow \mathbf{1 2 C O}_{2(\mathrm{~g})}+10 \mathrm{H}_{2} \mathrm{O}_{(\mathrm{g})}+\mathbf{6} \mathrm{N}_{2(\mathrm{~g})}+\mathrm{O}_{2(\mathrm{~g})}$
A 50.1 g sample of glyceryl trinitrate decomposes explosively in a confined space of 800 mL . If a temperature of $227^{\circ} \mathrm{C}$ is generated, calculate the pressure in MPa , that results from the explosion.
$\mathrm{MPa}=1,000 \mathrm{KPa}=1,000,000 \mathrm{~Pa}$
Mol of glyceryl trinitrate reacting $=50.1 / 227=0.221$
According to the stoichiometry of the equation above if 0.221 mol of glyceryl trinitrate reacted then
$-0.221 \times 3 \mathrm{~mol}$ of CO_{2}

- 0.221 X 2.5 mol of $\mathrm{H}_{2} \mathrm{O}$
$-0.221 \times 1.5 \mathrm{~mol}$ of N_{2}
$-0.221 \times 0.25 \mathrm{~mol}$ of O_{2} are formed.
This give a total of 1.60 moles of gas particles.
We use the ideal gas equation $P V=n R T$
=> $P=n R T / V$
$n=1.60$
$R=8.31$
$T=500 K$
$V=0.800 \mathrm{~L}$
$=>P=1.6 \times 8.31 \times 500 / 0.800=8310 \mathrm{KPa}$ or 8.31 MPa .

When 50.0 mL of $0.168 \mathrm{M} \mathrm{AgNO}_{3(\text { aq })}$ is added to an aqueous solution of $\mathrm{XO}_{4}{ }^{3-}$ ions, and reacts completely. A white precipitate is produced.
The precipitate is collected, dried, weighed and found to have a mass of 1.172 g .
a. Calculate the molar mass of the precipitate

Molar mass = mass/mol since we know the mass of precipitate 1.172 g we now find the mol of precipitate.
Step 1 Find the mol of Ag
The equation for the reaction is
$3 \mathrm{Ag}^{+}(\mathrm{aq})+\mathrm{XO}_{4}^{-3}=>\mathrm{Ag}_{3} \mathrm{XO}_{4}$
$n_{A g}=C X V=0.168 \mathrm{M} \times 0.0500 \mathrm{~L}=8.40 \times 10^{-3}$
$n_{\text {precipitate }}=\left(8.40 \times 10^{-3}\right) / 3=2.80 \times 10^{-3}$
Step 2 find the molar mass of the precipitate
molar mass $=1.172 / 2.80 \times 10^{-3}=419$
b. Identify element X .
$\mathrm{Ag}_{3} \mathrm{XO}_{4}=419$
$3 X 108+X+4 X 16.0=419$
$388+X=419$
$X=31=$ Phosphorus
c. If the precipitate was not completely dry when weighed how would this affect the calculated molar mass? Explain your answer.
The mass of the precipitate would be higher as water would be present.
This would distort the molar mass of X and make it higher.

