Friday Worksheet

Gravimetric 2

The strength of the eggshell of birds is determined by the calcium carbonate, $CaCO_3$, content of the eggshell.

The percentage of calcium carbonate in the eggshell can be determined by gravimetric analysis.

0.402 g of clean, dry eggshell was completely dissolved in a minimum volume of dilute hydrochloric acid.

 $CaCO_3(s) + 2H^+(aq) \rightarrow Ca^{2+}(aq) + CO_2(g) + H_2O(l)$

An excess of a basic solution of ammonium oxalate, $(NH_4)_2C_2O_4$, was then added to form crystals of

calcium oxalate monohydrate, CaC₂O₄.H₂O.

The suspension was filtered and the crystals were then dried to constant mass. 0.543 g of CaC₂O₄.H₂O was collected.

a. Write a balanced equation for the formation of the calcium oxalate monohydrate precipitate.

 $C_2O_4^{-2}_{(aq)} + Ca^{2+}_{(aq)} => CaC_2O_{4(s)}$

b. Determine the percentage, by mass, of calcium carbonate in the eggshell.

Find the $Fm(CaC_2O_4, H_2O) = 40.1 + 2 \times 12.0 + 4 \times 16.0 = 146.1$

Find the mol of CaC_2O_4

 $0.543 / 146.1 = 3.72 \times 10^{-3}$

Find the mol of Ca => mol of CaC₂O₄ = mol of Ca = mol of CaCO₃ = 3.72×10^{-3}

Mass of $CaCO_3 = 3.72 \times 10^{-3} \times 100.1 = 0.372g$

Percentage composition of $CaCO_3 = (0.372 / 0.402) \times 100 = 92.5\%$