Revision - organic, analytical and green chemistry.

1. Give the IUPAC names of the following organic molecules.

5,5

4-fluoro-2,4-dimethylpentan-2-ol
The amino acid isoleucine

5,5-dimethyl-1-hexanamine

2-chloro-3-ethyl-4-methylpentane
2. Draw the structural formula for the two compounds A and B with the molecular formula $\mathrm{C}_{4} \mathrm{H}_{8} \mathrm{O}$ and the ${ }^{1} \mathrm{H}$ NMR shown below

3. Below are two possible chemical reactions for the formation of ammonia.
i. $\quad \mathrm{NH}_{4} \mathrm{Cl}(\mathrm{aq})+\mathrm{NaOH}(\mathrm{aq}) \rightarrow \mathrm{NH}_{3}(\mathrm{~g})+\mathrm{NaCl}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{I})$
ii. $\quad 2 \mathrm{NO}(\mathrm{g})+5 \mathrm{H}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{NH}_{3}(\mathrm{~g})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{g})$
a. Using atom economy, select the reaction producing less waste? Show all working out.
$\begin{array}{ll}\text { i. } & (17 / 93.5) \times 100=18.2 \% \\ \text { ii } & (34 / 70) \times 100=48.6 \%\end{array}$
ii $\quad(34 / 70) \times 100=48.6 \%$
b. Calculate the \%yield of reaction ii. above, if 4.00 grams of H_{2} gas reacted completely with excess NO to produces 4.50 grams of NH_{3}.

$$
\begin{aligned}
& \text { Theoretical yield } \\
& =>\text { mol of } 4.00 \mathrm{~g} \text { of } \mathrm{H}_{2}=2 \mathrm{~mol} \\
& =>\text { mol of } \mathrm{NH}_{3} \text { formed is }(2 / 5) \times 2=0.400 \mathrm{~mol} \\
& =>\text { mass of } \mathrm{NH}_{3}=0.400 \times 17.0=6.80 \mathrm{~g} \\
& \text { \%yield }=(4.50 / 6.80) / \times 100=66.2 \%
\end{aligned}
$$

4. A sample of commercial vinegar is analysed using volumetric analysis to calculate its acetic acid concentration in mol/litre. An aliquot of 20.00 mL was taken from the original bottle and placed into a 200 mL volumetric flask and made to the mark with distilled water.
A 25.00 mL aliquot was taken from the volumetric flask and titrated against a standardised $0.100 \mathrm{M} \mathrm{Na}_{2} \mathrm{CO}_{3}$. An average titre of 27.89 mL was obtained using phenolphthalein as an indicator. Calculate the concentration, in mol/litre, of the acetic acid present in the vinegar. The reaction is given below.

$$
\mathrm{CH}_{3} \mathrm{COOH}(\mathrm{aq})+\mathrm{Na}_{2} \mathrm{CO}_{3}(\mathrm{aq}) \rightarrow \mathrm{CO}_{2}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{I})+\mathrm{NaOOCCH}_{3(\mathrm{aq})}
$$

Step 1 - find the mol of titrant delivered in an average titre.
=> $n=C \times V=0.100 \times 0.02789=0.002789$
Step 2 - Using the balanced equation calculate the mol of vinegar present
=> $1: 1$ ratio $=>n_{\text {vinegar }}=0.002789$
Step 3 - calculate the mol of vinegar in the volumetric flask
=> (200/25) X 0.002789 = 0.0223 mol
Step 4 - calculate the concentration of vinegar
=> $0.0223 / 0.0200=1.12 \mathrm{M}$
5. Ethyl propanoate is a food additive in candy that gives the confectionary a fruity flavour and aroma. Give a set of valid reaction pathways for the formation of ethyl propanoate given the organic starting compounds propane and ethene. Clearly show all reagents and their state in the reaction pathway.
ethene
 ethanol

