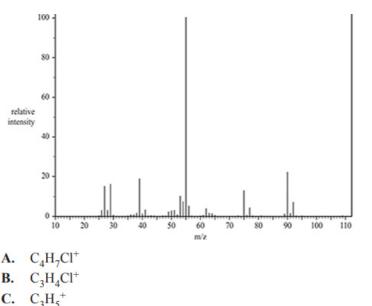
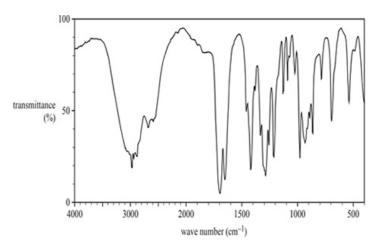

Spectroscopy (2018 NHT)


1) The following two spectra were obtained for a pure organic substance, Compound W. $\!\!\!$

 $C_{4}H_{7}^{+}$

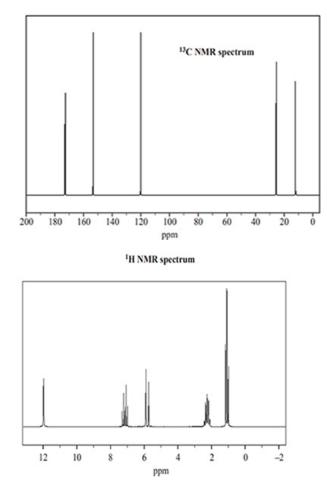
D.



2) The mass spectrum shown above is for a molecule with the molecular formula C_4H_7CI . Which species is responsible for the base peak?

Solution will appear here

Solution will appear here


3) A student investigated an organic substance, Compound Y, with the molecular formula ${\rm C}_5{\rm H}_8{\rm O}$

The infra-red spectrum of Compound Y is shown above. On the spectrum, circle two peaks and identify the bond(s) responsible for each peak.

Solution

4) A sample of Compound Y was further analysed using $^{13}\rm C$ NMR and $^{1}\rm H$ NMR. The spectra are shown below.

Solution will appear here

Solution will appear here

¹H NMR data

Chemical shift (ppm)	Relative peak area	Peak splitting
1.1	3	triplet (3)
2.3	2	pentet (5)
5.8	1	doublet (2)
7.1	1	quartet (4)
12	1	singlet (1)

a) Use the information provided in the $^{13}\rm{C}$ NMR spectrum to identify the number of different carbon environments for Compound Y.

b) For the signal at 2.3 ppm in the ¹H NMR spectrum, identify what specific information is provided by
the relative peak area

peak splittingd) Draw the structural formula of Compound Y.

Solution