Friday Worksheet

Name: \qquad

Volumetric 3

1) The change in pH as a 0.10 M solution of a NaOH is added to 20.0 mL of a 0.10 M solution of a ethanoic acid is shown below.

Acid-base indicators			
Name pH range Colour change Acid Base Thymol blue $1.2-2.8$ red yellow Methyl orange $3.1-4.4$ red yellow Bromophenol blue $3.0-4.6$ yellow blue Methyl red $4.2-6.3$ red yellow Bromothymol blue $6.0-7.6$ yellow blue Phenol red $6.8-8.4$ yellow red Phenolphthalein $8.3-10.0$ colourless red			

Refer to the acid-base indicator data provided and identify the indicator that would be least suitable to detect the end point of this neutralisation reaction.
Explain why.
2) A 30.00 mL aliquot of $0.200 \mathrm{M} \mathrm{CH}_{3} \mathrm{COOH}$ (ethanoic acid) is titrated with 0.160 M $\mathrm{Ca}(\mathrm{OH})_{2}$ solution.
a) Give the equation for the reaction between the ethanoic acid and $\mathrm{Ca}(\mathrm{OH})_{2}$
b) What volume of the $\mathrm{Ca}(\mathrm{OH})_{2}$ solution is required to completely react with the ethanoic acid?
3) Consider the titration curve on the right.
a) What is the likely acid being used from the list below? Explain
i) HCl
ii) $\mathrm{H}_{2} \mathrm{SO}_{4}$
iii) $\mathrm{NH}_{4}{ }^{+}$

b) Explain, using your chosen acid as an example, why the equivalence point is at a pH significantly above 7 .

