Volumetric 1

0.326 g of a pure acid, $\mathrm{H}_{2} \mathrm{X}(\mathrm{s})$, reacts with exactly 100 mL of $0.105 \mathrm{M} \mathrm{NaOH}(\mathrm{aq})$.

A reaction occurs according to the equation
$\mathrm{H}_{2} \mathrm{X}(\mathrm{s})+2 \mathrm{NaOH}(\mathrm{aq}) \rightarrow \mathrm{Na}_{2} \mathrm{X}(\mathrm{aq})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})$
Calculate
i. the amount, in mol, of NaOH that is added to the acid $\mathrm{H}_{2} \mathrm{X}$.

Mol of $\mathrm{NaOH}=C X V=0.105 \mathrm{MXX} 0.100 \mathrm{~L}=0.0105 \mathrm{~mol}$
ii. the amount, in mol, of acid $\mathrm{H}_{2} \mathrm{X}$.

Mol of $\mathrm{H}_{2} \mathrm{X}=1 / 2 \mathrm{~mol}$ of $\mathrm{NaOH}=1 / 2 \times 0.0105=0.00525$
iii. the molar mass, in g mol', of the acid $\mathrm{H}_{2} \mathrm{X}$
mass $=$ mol X formula mass
$=>$ formula mass $=$ mass $/ \mathrm{mol}=0.326 \mathrm{~g} / 0.00525 \mathrm{~mol}=62 \mathrm{~mol} / \mathrm{g}$
iv. Identify acid $\mathrm{H}_{2} \mathrm{X}$

The only diprotic acid with a formula mass of 62 is $\mathrm{H}_{2} \mathrm{CO}_{3}$

